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VULCAN (Viscous Upwind aLgorithm for Complex flow ANalysis) is a cell centered, 

finite volume code used to solve high speed flows related to hypersonic vehicles.  Two 
algorithms are presented for expanding the range of applications of the current Navier-Stokes 
solver implemented in VULCAN.  The first addition is a highly implicit approach that uses 
subiterations to enhance block to block connectivity between adjacent subdomains.  The addition 
of this scheme allows more efficient solution of viscous flows on highly-stretched meshes. The 
second algorithm addresses the shortcomings associated with density-based schemes by the 
addition of a time -derivative preconditioning strategy.  High speed, compressible flows are 
typically solved with density based schemes, which show a high level of degradation in accuracy 
and convergence at low Mach numbers ( )1.0≤M . With the addition of preconditioning and 
associated modifications to the numerical discretization scheme, the eigenvalues will scale with 
the local velocity, and the above problems will be eliminated.  With these additions, VULCAN 
now has improved convergence behavior for multi-block, highly-stretched meshes and also can 
solve the Navier-Stokes equations for very low Mach numbers. 

 
 

Introduction 
 
 

The VULCAN (Viscous Upwind aLgorithm 
for Complex flow ANalysis) Navier-Stokes solver is 
considered the NASA standard in simulating reacting 
internal flows characteristic of high-speed propulsion 
devices. [1]  VULCAN can solve the Navier-Stokes 
or Parabolized Navier-Stokes equations using a 
variety of discretizations, integration algorithms, 
turbulence models, and chemistry models and is 
applicable to general structured grids on multi-block 
domains. 

MPI message-passing is used to adapt 
VULCAN to parallel architectures.  The baseline 
integration strategy for Navier-Stokes applications 
within VULCAN is a diagonalized approximate 
factorization scheme.  This scheme is rather efficient 
on a per-iteration basis but is sensitive to the near-

wall grid spacing.  Convergence rates can degrade rapidly 
for highly-stretched meshes.  Furthermore, convergence 
rates can degrade when large numbers of blocks are used, 
due to the lack of strong coupling between adjacent 
blocks.  VULCAN is also designed for higher Mach 
number applications, and like most compressible flow 
solvers, can experience convergence degradation and 
solution inaccuracy for very low Mach number flows.  
The present effort is concerned with improving the 
numerical efficiency of VULCAN for viscous flows on 
multi-block, highly -stretched meshes and for general low 
Mach number calculations.  In the former context, planar 
relaxation based implicit methods are introduced, along 
with sub-iterative procedures that allow for a large degree 
of implicit coupling among blocks. In the latter context, a 
time-derivative preconditioning strategy based on the “all-
speed” flux formulae of [2] is implemented and tested for 
laminar and turbulent flows of  calorically- and thermally-
perfect gas at low Mach numbers.  The cases used for 
validation are the West and Korkegi double wedge 
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configuration [3], a 3-D channel flow, inviscid flow 
over a bump along a 2-D channel, a flat plate 
simulation, and finally, a simulation of subsonic-to-
supersonic flow transition in a two-dimensional 
nozzle. 

Governing Equations  
VULCAN solves the three-dimensional Navier-
Stokes equations, expanded to include separate 
transport equations for individual species and two-
equation turbulence model components.  Written in a 
generalized coordinate system, the Navier-Stokes set 
may be written as 

,0)( =+
∂

QR
t

dQ         (1) 

with the residual operator )(QR  given as 
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The solution vector, Q, is given by: 
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and the inviscid flux terms are defined as 
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The Jacobian, J , of the transformation is  defined as 

( )
( )zyx
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∂
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The components of the cell face unit normal and the 
contravariant velocities are 
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222
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wvuW zyx ζζζ ++=           (7) 

Definitions for viscous flux vectors, Ev, Fv, and Gv and the 
source-term vector S  can be found in [1]. 

In the above equations, Yi is the mass fraction of the ith 
chemical species and NCS is the total number of chemical 
species. 

 For a calorically perfect gas, the pressure, total 
enthalpy, static enthalpy, and total energy are given by 

RTp ρ=  

( )222

2
1

wvuhH +++=  

TCh p=                    (8) 

PHEt −= ρ  

For a thermally perfect gas, the pressure, species 
enthalpy, and static enthalpy are formed by the 
expressions: 
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where Ri (Ru/µi) is the ith species gas constant.  Ru is 
the universal gas constant and µi is the species 
molecular weight. 

 

Planar Relaxation Implicit Flow Solvers 
for Multi-Block Domains . 

Algorithm 

One of the major problems encountered 
when solving three-dimensional problems on large 
numbers of blocks is a reduction in the overall 
convergence rate as the number of blocks increases.  
Typical domain-decomposition strategies used for 
finite-volume discretizations only allow one or two 
mesh cells of overlap between adjacent domains.  
Typical implicit solvers, when formulated for multi-
block arrangements, do not consider matrix elements 
that would multiply corrections generated in adjacent 
domains.  Therefore, subdomain coupling is only 
achieved in an explicit manner, through the residual 
evaluation at cells adjacent to block interfaces.     

The RLX3D option in VULCAN is built 
around a planar relaxation scheme for solving the 
sub-domain implicit problem, and is designed to 
solve the complete (not parabolized) Navier-Stokes 
equations.   The chosen sweep direction may be 
block-specific, and the crossflow plane linear system 
is approximately solved using an incomplete LU 
decomposition procedure. This approach alleviates 
much of the numerical stiffness associated with 
highly-stretched mesh cells, provided that the 
crossflow plane is oriented so that to encompass the 
coordinate direction(s) with the largest degree of 
mesh stretching.    Techniques such as Jacobian 
freezing are used to reduce the overall CPU load, and 
implicit boundary conditions are incorporated to 
further enhance stability.  The RLX3D option has 
been tested for supersonic turbulent flow past a 
cylinder, laminar flow between two intersecting 
wedges [3] and 1-D unsteady flow using a dual-time-
stepping approach. 

 
An improved implicit algorithm has been 

developed with better block-to-block coupling.  
M represents the planar relaxation implicit operator 
as applied over a subdomain, with its action upon a 

residual vector, ,R denoted by the operation RM 1− .  

The actual Jacobian matrix is denoted as A .  Note that the 
factorization of M is defined only over the interior grid 
points within a particular subdomain.  In contrast, the 
Jacobian matrix A  contains elements that may multiply 
corrections that are obtained from the solution of the 
linear system in adjacent subdomains.  Thus we may split 
the matrix A  into ENM ++ , where N contains 
elements of A  that would multiply corrections in 
adjacent subdomains and E  is the factorization error.  
Given this, a general iterative scheme for improving the 
solution of the linear problem at a particular subdomain 
may be defined as: 
 

lnnlnln QARQQM ,1,11,1 )( ++++ ∆−−=∆−∆   

for 1,1 ++∆ lnQ       (10) 
 
Here, the index n denotes a particular iteration level for 
the solution of the nonlinear problem (for unsteady flows, 
this could be part of another subiteration), and the index l  
denotes a particular iteration level for the iterative 
improvement of the solution of the linear problem.  With 
this basic strategy in place, one can define an algorithm 
for improving block-to-block coupling: 
 

Solve:  nn RMQ 11,1 −+ −=∆  

For l =1, maxl : 

 

1: Pass appropriate lnQ ,1+∆ elements to ghost cells of 
adjacent blocks (parallel MPI send / receive) 
 
2: Solve: )( ,11,11,1 lnnlnln QARMQQ +−+++ ∆−−+∆=∆  
 
End loop 
 

Update:  1max,11 +++ ∆+= lnnn QQQ  
 
This algorithm requires that an extra block diagonal 
matrix, corresponding to the block diagonal of A , which 
is normally over-written by the planar ILU factorization, 

be stored in addition to M  itself.  The only change to the 
VULCAN input deck necessary to implement this 
algorithm is a flag indicating the number of subiterations 

performed, .maxl   If this is set to zero, then no 

subiterations are performed and the planar relaxation 
scheme alone is used to advance the solution.    Test cases 
shown in the Results section provide indications of the 
degree of improvement in convergence rates offered by 
this approach.  
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Time-Derivative Preconditioning 

Algorithm 

The time -derivative preconditioning strategy 
currently implemented into VULCAN combines the 
rank-one preconditioning matrix of Weiss and Smith 
[4] with the “all-speed” version of the low diffusion 
flux-splitting scheme (LDFSS) of Edwards [5], 
developed according to a methodology presented in 
Edwards and Liou [2].  The preconditioning method 
can currently be used with Runge-Kutta explicit time 
integration and diagonalized approximate 
factorization implicit time integration.   

 
The preconditioned Navier-Stokes equation 

set is given by: 

          ,0)( =+
∂

QR
t

dQ
P          (11) 

where the preconditioning matrix, P, is defined as 
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where Neq represents the total number of equations. 

The reference velocity, 
refV , is responsible 

for scaling the eigenvalues of the equation set at low 
speeds to be of the same order.  

refV  is defined as 
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where a is the sound speed and 
2

V
r

is the velocity 

magnitude.  
∞V  in the above equation acts as a cutoff 

velocity to prevent singularities in the proximity of 
stagnation regions.  In the VULCAN implementation, 
the constant K scaling the cutoff velocity is a user 
input, and   

∞V  is set to the inputted free-stream 

velocity.  

The eigenvalues of 
Q
E

P
∂
∂−1 are: 
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As the incompressible limit is approached, the 
eigenvalues become  

U ,U ,U  

           [ ]22 4
2
1

refVUU +±                      (15) 

whereas the eigenvalues revert to their traditional values 
UUU ,, , and aU ±  as 2

refV  ?  a2. 

Numerical Discretization 

To ensure accuracy at all flow speeds, it is necessary that 
the numerical discretization of the inviscid flux terms 
reflect the preconditioned eigensystem.  There are several 
approaches for doing this, with the most rigorous being 
the use of characteristic analysis to derive preconditioned 
analogues of matrix-dissipation methods.   In the 
VULCAN implementation, we instead implement a 
preconditioned variant of the low diffusion flux-splitting 
scheme (LDFSS) of Edwards [5], developed according to 
a methodology presented in Edwards and Liou [2].  The 
interface flux 

IE  in LDFSS is split into convective and 
pressure contributions as follows: 

[ ] [ ]RRLL
pC

LR
C
LLI pDpDEECECaE −+−+ ++−= ρρ

2
1  

(16) 

The vector 
CE is the same as u

r
in Eq. (13), while 

[ ]000000 zyx
pE ξξξK=  (17) 

The “preconditioned” interface sound speed 
2
1a is defined 

as 
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where the subscript ½ represents evaluation of the 
quantity using flowfield information arithmetically-

averaged to the cell interface.  The quantities +C , −C , 
+D , and −D are functions of left-and right-state Mach 

numbers, specially defined in terms of the interface sound 
speed and the reference Mach number as follows [2]: 
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1

/
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U
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For gas-dynamic flows, the use of the mo dified Mach 
number definitions in conjunction with the 
“preconditioned” sound speed enables the numerical 
dissipation mechanism of LDFSS to scale properly at 
all speeds.  Exceptions to this are the definitions for 

+C and −C , which contain a pressure-dissipation 
term proportional to 

RL pp − . As shown in [2], this 

term acts to provide pressure-velocity coupling at low 
speeds, and to ensure that this effect scales properly, 

the term must be multiplied by 
2

2/1,/1 refM .    
Precise definitions of the components of  LDFSS 
may be found in [5], and a more recent extension 
valid for general fluids may be found in [6]. 

Time-Stepping Scheme  

The solution is advanced in time by a 
preconditioned, diagonalized approximate 
factorization (DAF) scheme.  The preconditioned 
version of the DAF scheme is written as follows: 
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In this, the modal matrices 
pTξ , 1)( −pTξ , etc. are 

constructed from diagonalization transformations of 
the forms  

Q
E

PTT p
c

pp

∂
∂

= −− 11
, )( ξξξ λ ,               (24) 

where c
p

,ξλ  is a diagonal matrix containing the 
eigenvalues of the preconditioned Euler system.  
Note that the first step of the DAF procedure is an 
approximation of the more exact expression 

[ ] n
kjiQ tRJQtSJP ∆−=∆∆− *

,,
  (25) 

This approximation allows the use of the Sherman-
Morrison theorem to compute the action of 1−P on the 
residual vector in O(n) operations.  The action of all other 
source Jacobian elements (those corresponding to 
chemistry and turbulence source terms) on the residual 
vector is computed in a separate step, involving the use of 
Householder transformations to ensure good numerical 
stability.    

 Other additions to VULCAN required for 
preconditioning include the use of characteristic inflow 
boundary conditions based on the preconditioned 
equations and the use of local time steps based on the 
eigenvalues of the preconditioned system.   

 

Results 

 
Planar Relaxation Results  
 

The testing of the algorithm has been focused on 
the West-Korkegi intersecting-wedge geometry [3] and a 
channel-flow analogue formed by eliminating the wedges 
and the clustering to the leading edge.  The clustering in 
the Y and Z directions remains the same, as do the length, 
width, and height of the (now) rectangular geometry.  The 
free-stream conditions for the intersecting-wedge 
simulations are: M∞ =3, Re/m =2.11e6, T∞ =105 K.  The 
free-stream conditions for the channel-flow simulations 
are: M∞ =0.5, Re/m =3.52e5, T∞ =105 K.   In both cases, 
the grid size is 65x125x125 and laminar flow is assumed.   
Unless otherwise mentioned, all cases were performed in 
parallel on the North Carolina Supercomputing Center 
IBM-SP2 using a 16-block load-balanced decomposition 
of the baseline grid.  

 
Figure 1 presents baseline results for the RLX3D 

planar relaxation method ( maxl =0).   The positive effect 

of using implicit boundary conditions is clearly indicated, 
as is the fact that the planar relaxation procedure allows a 
much higher CFL that the baseline DAF scheme.   This 
translates in a significant CPU savings, as the DAF 
scheme at a CFL of 3.5 takes 2.9 hours to run on the 
NCSC IBM-SP2 (16 processors) while the planar 
relaxation scheme at a CFL of 150 requires only 1.95 
hours.   

Figure 2 presents results from a CFL-ramping 
exercise performed for the supersonic West-Korkegi case.  
The final CFL number is reached by ramping from 0.1 to 
20 over the first 500 iterations, from 20 to 150 over the 
next 500, and from 150 to the final value over the next 
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250 iterations.  In this case and in most subsequent 
ones, the first 500 iterations are performed on a 
coarse mesh using a first-order accurate inviscid flux 
discretization.  Jacobian freezing is initiated after 250 
iterations, with re-evaluation and factorization of the 
matrices performed every 5 iterations past this point.  
The controlling parameter maxl  is set to one for this 

study.  Figure 2 shows that there is little advantage to 
choosing a CFL higher than 150 for this case.  Figure 
3 shows the effect of the choice of sweep direction on 
the performance of the iteratively improved planar 
relaxation algorithm with maxl = 0 and maxl =1.  

Sweeping in the “i” direction (the direction of the 
dominant movement of the supersonic flow) is 
clearly preferable to sweeping in the “j” direction.  
Performing one subiteration to improve the solution 
of the linear system improves the performance in 
both cases, at least in terms of the number of 
iterations. 

Figure 4 illustrates the effect of varying 

maxl on the number of iterations required for 

convergence.  As shown, the number of iterations 
required for convergence drops as the number of 
subiterations performed increases.  Also shown for 
comparison is a calculation performed on the single-
block grid using maxl = 0.  This calculation was 

performed on a Compaq ES -40, which has enough 
shared memory to store all of the matrix elements in 
core.  Interestingly, the single-block grid 
performance at maxl = 0 is slightly worse than the 16-

block performance.  Otherwise, the trends are what 
one might expect.  As the work increases 
significantly with the increase in the number of 
subiterations, it is instructive to examine wall clock 
time.  Figure 5 shows that for this predominately 
supersonic flow, there is little benefit to performing 
the subiterations, with only about a 15%  
improvement in overall execution time for the best 
case of maxl = 2. 

The next test case corresponds to Mach 0.5 
flow through a channel similar in dimension to the 
West-Korkegi geometry.  The single-block 
65x125x125 grid is decomposed into 16 blocks along 
the “i” coordinate.  The CFL is ramped from a 
starting value of 0.1 to a final value of 20 for the 
planar relaxation variants, and again, 500 iterations 
are performed to first-order spatial accuracy on the 
coarser mesh before interpolating the solution to the 
finest mesh.  Figure 6 portrays convergence histories 
for four runs:  the first-order planar relaxation 

scheme with maxl = 0 and maxl = 2, and the second-

order planar relaxation scheme with maxl = 0 and maxl = 

2.  As shown, more than a three-fold improvement in the 
number of iterations required for convergence is 
evidenced for the first–order discretization.  CPU times 
for the first order discretizations are 107.30 minutes for 

maxl = 0 and 33.41 minutes for maxl =2.  These times are 

also nearly a three-fold improvement.  It is possible that 
the system load may have been different for each of these 
runs, as the fact that the CPU speedup is nearly in accord 
with the iteration count is somewhat surprising, given the 
extra expense of the subiteration procedure.  It is 
noteworthy that the use of subiterations stabilizes the 
second-order case to the point that its convergence rate is 
very similar to the first-order case.  Otherwise, as 
evidenced by the results, the calculation eventually 
diverges.  In comparison with the supersonic West and 
Korkegi case, these results indicate that the benefits of 
subiterative improvement of the linear system solution 
may be much larger for subsonic flows.  The technique 
appears to aid in damping and/or expelling pressure 
disturbances that otherwise tend to reflect from physical 
and interface boundaries.  
 
Preconditioning Results  
 

The four test cases for the preconditioned system 
are flow over a flat-plate, flow through a two-dimensional 
UTRC nozzle, flow between intersecting wedges, and 
inviscid flow over a bump in a channel.  These 
correspond to variations on standard test cases included in 
the VULCAN package.  In all cases the maximum CFL is 
set to 2.5, and most cases involve both turbulent and 
laminar flow as well as multi-component gases.   In all 
turbulent cases, the Wilcox (1998) k-ω model is used, 
while for all multi-component cases, a mixture of nitrogen 
and oxygen is used. 

Two-dimensional flow over flat plate  

Figure 7 shows the 65x129 grid for the flat-plate 
simulation.   The first run was to compare the results of 
ramping the Mach number down from Mach 0.5 to Mach 
0.005.  The free-stream conditions for the Mach 0.5 
simulation are:  Re/m = 1.11e7, T∞ = 300K.  In each 
successive case the only parameter changed was the Mach 
number, which decreased the Reynolds number by a 
factor of 10 for each succeeding run.  Figure 8 presents 
convergence histories for preconditioned and non-
preconditioned cases at each Mach number.  Strikingly, it 
can be seen that the convergence of the non-
preconditioned system is not altered by lowering the 
Mach number, whereas the preconditioned system 
converges faster for only Mach 0.5 and 0.05.  A closer 
investigation into the solution produced by the non-
preconditioned system verified that the solution was in 
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fact incorrect.  This was verified when comparing 
with the Blasius solution at distances of 0.3, 0.40, and 
0.45 meters from the front edge of the flat plate.  By 
using the Blasius solution for flow over a flat plate, 
the boundary layer thickness can be calculated as: 

( )
x

x
x

Re
0.5

=δ                       (26) 

Table 1 shows how the non-preconditioned system 
behaves in comparison to the preconditioned system.  
From this table it can be inferred that the non-
preconditioned system is in fact converging to an 
incorrect solution.  The preconditioned system has a 
more realistic value for the thickness of the boundary 
layer.  For the Mach 0.05 run, the error for the 
preconditioned system is no larger than 6.7%.  For 
the Mach 0.005 simulation, the error is less than 
2.3%.  Both of these numbers are in stark contrast to 
the 85-95% error found in the results obtained 
without preconditioning. 

Figures 9 and 10 show the results for a 
turbulent, calorically perfect and a turbulent, two-
species air flow over a flat plate, respectively.  The 
convergences for each case are very similar to the 
laminar flow in Figure 9.  In all three examples, the 
preconditioned Mach 0.5 case showed a marked 
improvement in convergence over the non-
preconditioned system.  This is somewhat in contrast 
with the results from the eigenvalue analysis, which 
indicate that the non-preconditioned system should 
have a better overall condition number at this Mach 
number.  One reason may be the presence, in the 
preconditioned flux-splitting, of pressure-diffusion 
terms that tend to smooth out variations in the 
pressure field.  As will be seen in the next few 
examples, this result is consistently independent of 
geometry.    The convergence degradation indicated 
for the Mach 0.005 calculations could be associated 
with the decrease in Reynolds number.  Stiffness due 
to low Reynolds numbers will not be alleviated by 
the invis cid preconditioning techniques currently 
employed in VULCAN. 

Two-dimensional flow through a nozzle 

 The next case considered is flow through the 
two-dimensional UTRC nozzle.  This is a standard 
test case for the VULCAN solver that involves 
decomposing the nozzle flow into two regions: an 
elliptic region upstream of the nozzle throat and a 
parabolic region downstream of the throat.  The 
elliptic region is solved using the DAF scheme 
(preconditioned and non-preconditioned), while the 
parabolic region is solved using space-marching once 
the elliptic solution has been obtained.  Figure 11 

shows the grid used in the calculation, while Figures 12 
and 13 show contours of Mach number and eddy-
viscosity ratio (referenced to the laminar value), 
respectively.  In the other calculations presented in this 
paper, the constant K scaling the cutoff velocity in Eq. 
(14) is set to one, since the velocity everywhere is near 
the free-stream velocity.  In the nozzle calculation, 
however, the free-stream sound speed is chosen as the 
reference velocity. Thus, a choice of K=1 will not activate 
preconditioning in the elliptic region.  Figure 14 
illustrates the effect of lowering K (equal to “qctoff” in 
the figure) on the convergence rates.   The best results (for 
a four order-of-magnitude reduction) are obtained for 
K~0.1. Lower values result in a significant degradation in 
convergence rate, though the slope appears to be more 
consistent.  These results indicate that the proper 
reference-velocity choice for strongly-mixed subsonic / 
supersonic flowfields may not be obvious, and that trial-
and-error procedures may have to be used to obtain the 
best results.  Even with this ambiguity, the use of 
preconditioning results in a factor of 2 savings in iteration 
count.  This translates into nearly a factor of 2 savings in 
CPU time, as the modifications necessary for 
implementing preconditioning require very little 
additional CPU time.   

Three-dimensional flow through intersecting wedges 

 Figures 15-18 present results from simulations of 
subsonic viscous flow through the West-Korkegi 
intersecting wedge geometry (shown in Figure 15) Free-
stream conditions are chosen to be the same as in the two-
dimensional flat-plate case.  Figure 16 illustrates the 
convergence histories for laminar flow through the 
wedges.  The three non-preconditioned solutions do not 
converge at the same rate and show worse convergences 
than the preconditioned scheme at all Mach numbers, 
except Mach 0.005.  As the Mach number decreases in 
magnitude beyond the Mach 0.5 case, the convergence 
rate is shown to decrease quickly.  The preconditioned 
system contains a few oscillations but maintains its 
downward trend towards convergence.  Figure 17 shows 
results for the turbulent, calorically perfect case.  This 
case shows trends that are almost identical to the laminar 
flow. 

The disparity in the results given by the non-
preconditioned system is magnified when running the two 
species, turbulent simulation.  As can be seen in Figure 
18, the non-preconditioned residual at Mach 0.005 does 
not go down, but rather oscillates wildly around 10-1.  
Although its preconditioned counterpart does not display 
this behavior, the convergence rate is noticeably slowed 
down.  The residual of the preconditioned system 
continues to go down towards convergence with minimal 
oscillations (in comparison to non-preconditioned 
system).     
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To verify that the results produced by the 
preconditioning formulation were physically 
consistent, calculations of laminar flow through the 
channel analogue of the West-Korkegi geometry 
were also performed.   At locations far enough away 
from the corner, it was anticipated that the boundary 
layer would develop according to the Blasius scaling 
shown in Eq. (26).   Table 2 compares predictions 
from the preconditioned and non-preconditioned 
formulations versus the Blasius result.   The 
boundary layer thickness obtained from the non-
preconditioned formulation turned out to have an 
error of no less than 85%, while the preconditioned 
formulation provided results within a reasonable 6% 
of the theoretical values.   Convergence trends were 
similar to those corresponding to the intersecting 
wedges and are thus not shown.  

Inviscid flow over a bump in a channel 

 The last example of the validation of the 
preconditioning strategy is inviscid flow over a bump 
in a channel.  For this particular case, the Euler 
equations are solved, thus Reynolds-number effects 
illustrated in the earlier calculations are not present.  
Figure 19 portrays the grid used for the calculations, 
while  Figure 20 shows the convergence histories for 
Mach numbers of 0.5, 0.05, and  0.005.  These 
calculations reveal the expected trend of (nearly) 
Mach-number independent convergence rates when 
using the preconditioning technique.  In contrast, the 
non-preconditioned formulation displays a significant 
degradation in convergence rate as the Mach number 
is lowered.  

 Finally, an important property of the 
preconditioned DAF scheme is verified in Figure 21.  
The preconditioned scheme is designed to revert back 
to the compressible Navier Stokes equations for 
higher Mach-number flows.   It is apparent from this 
figure that the two schemes are in fact identical for 
supersonic flow over the bump, thus demonstrating 
the validity of the preconditioned diagonalized 
approximate factorization scheme for all flow speeds.  
 
 

Conclusions  

 Two algorithms for enhancing the 
capabilities of the VULCAN Navier-Stokes solver 
have been presented.  The purpose of the first 
algorithm is to improve convergence rates for viscous 
flows on highly-stretched, mult i-block meshes. The 
algorithm decreases not only the number of iterations 
to convergence, but also the time to convergence, an 
important factor in weighing the importance of this 
new addition.  So far, this addition is specialized for 

calorically-perfect gases. The second algorithm is a time-
derivative preconditioning strategy that is intended to 
expand the range of applicability of VULCAN toward 
low-speed, nearly incompressible flows.  This addition is 
valid for calorically and thermally-perfect gas and is 
designed for use with the baseline diagonalized 
approximate factorization algorithm in VULCAN. Test 
cases show that the preconditioning framework greatly 
improves solution accuracy for low Mach numbers.  
Stiffness due to low-Reynolds number effects, is not, 
however, eliminated in the present formulation, leading to 
some convergence degradation for low-speed, low 
Reynolds number flows.   This may require the use of 
“viscous” preconditioning strategies or a more implicit 
treatment of the viscous terms.  Future work will focus on 
combining the time-derivative preconditioning techniques 
with the fully-implicit formulations to arrive at a 
framework capable of alleviating most sources of 
numerical stiffness present in large-scale flow 
calculations.  
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scheme 

CYCLE

R
el

L
2

1000 2000 3000 4000 5000
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
Planar relaxation without implicit BC's (CFL = 20)
Planar relaxation with implicit BC's (CFL = 20)
Planar relaxation with implicit BC's (CFL = 150)
Diagonalized AF (CFL = 3.5)

500 itsonthecoarse mesh; 5000 itsonthe fine mesh
Jacobian freezing activatedafter 250 itson each mesh

Implicit BC's inJ and Kdirections

CYCLE

R
e

l L2

1000 2000 3000 4000 5000
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

relaxation sweep in "i" direction; lma x = 0
relaxation sweep in "i" direction; lma x = 1
relaxation sweep in "j" direction; lma x = 0
relaxation sweep in "j" direction; lma x = 1

Figure 3: Effect of sweep direction on convergence
CYCLE

R
el

L
2

0 1000 2000 3000
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

lma x = 0; single block grid
lma x = 0; 16 block grid
lma x = 1; 16 block grid
lma x = 2; 16 block grid
lma x = 3; 16 block grid
lma x = 4; 16 block grid

Figure 4: Effect of subiteration number on convergence



AIAA 2003-3979 

 
10 of 14 

 
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS 

l
max

IB
M

S
P

-2
w

al
lc

lo
ck

tim
e

(s
ec

on
ds

)

0 1 2 3 4
90

92

94

96

98

100

102

104

106

108

110

112

114

116

118

120

Figure 5: CPU time required versus number of subiterations
CYCLE

R
el

L
2

500 1000 1500
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

planar relaxat ion, first order, lmax = 0
planar relaxat ion, first order, lmax = 2
planar relaxat ion, second order, lmax = 0
planar relaxat ion, second order, lmax = 2
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Figure 7: Computational Grid for flow over a Flat-Plate
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Figure 9: Convergence history for various Mach numbers for a turbulent,
calorically perfect flow over a Flat-Plate

CYCLE
R

e
l L2

1000 2000 3000 4000 5000

-3

-2.5

-2

-1.5

-1

-0.5

0

LDFSS, Mach 0.5
PR ECOND, Mach 0.5
LDFSS, Mach 0.05
PR ECOND, Mach 0.05
LDFSS, Mach 0.005
PR ECOND, Mach 0.005

Figure 10 : Convergence history for various Mach numbers for a turbulent,
two-species air flow over a Flat-Plate  

 
 
 
 
 
 
 

 
 



AIAA 2003-3979 

 
12 of 14 

 
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS 

 
 
 
 
 
 
 
 
 
 
 
 
 

X Y

Z

65
125

125

Figure 15: Computational Grid for West-Korkegi intersecting-wedges flow
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F igure 16: Convergence history for various Mach numbers forlaminar
flow through West-Korkegi intersecting-wedges
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F igure 17: Convergence history for various Mach numbers for a turbulent,
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Figure 18: Convergence history for various Mach numbers for a turbulent,
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Figure 19: Computational Grid for flow over a Bump
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Figure 20: Convergence history for various Mach numbers for
flow over a Bump  
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Table 1:  Boundary layer thickness for laminar flow over Flat-Plate 
X-

location d (meters) at Mach 0.05 d (meters) at Mach 0.005 
(meters) Non-preconditioned Preconditioned Actual Non-preconditioned Preconditioned Actual 

0.3 3.68E-04 2.55E-03 2.60E-3 3.59E-04 8.15E-03 8.22E-3 
% Error 85.8 2.0   95.6 0.9   

0.4 3.71E-04 2.83E-03 3.00E-3 3.63E-04 9.27E-03 9.49E-3 
% Error 87.6 5.5   96.2 2.3   

0.45 3.85E-04 2.97E-03 3.18E-3 3.63E-04 9.86E-03 1.01E-2 
% Error 87.9 6.7   96.4 2.1   

 
 
 

Table 2:  Boundary layer thickness for laminar flow through Channel 
X-

location d (meters) at Mach 0.05 d (meters) at Mach 0.005 
(meters) Non-preconditioned Preconditioned Actual Non-preconditioned Preconditioned Actual 

0.3 3.72E-04 2.52E-03 2.60E-3 3.59E-04 8.16E-03 8.22E-3 
% Error 85.7 2.9   95.6 0.6   

0.4 3.61E-04 2.84E-03 3.00E-3 3.79E-04 9.25E-03 9.49E-3 
% Error 88.0 5.3   96.0 2.5   

0.45 3.60E-04 2.99E-03 3.18E-3 3.76E-04 9.84E-03 1.01E-2 
% Error 88.7 6.1   96.3 2.2   

 
 




